MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2018

Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

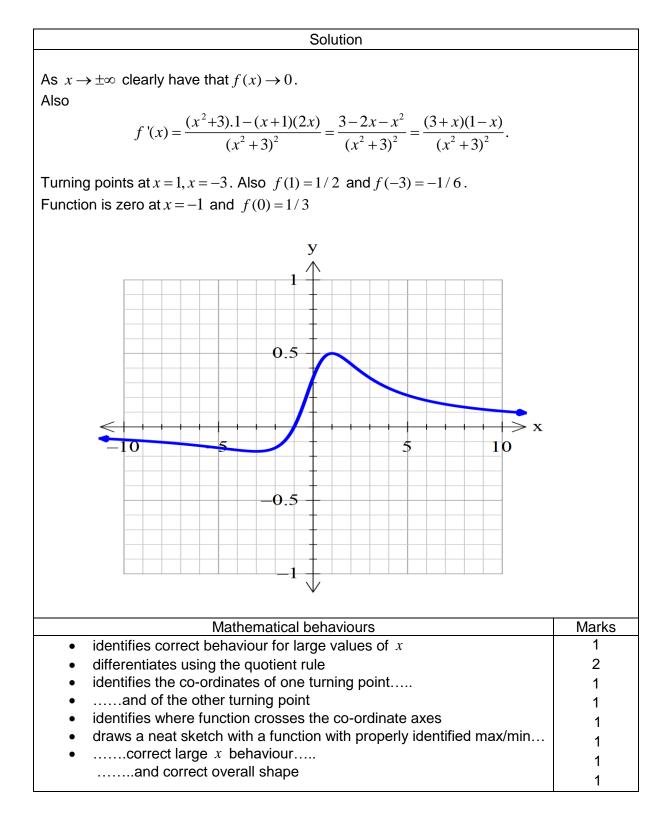
• the end of week 8 of term 2, 2018

Question 1

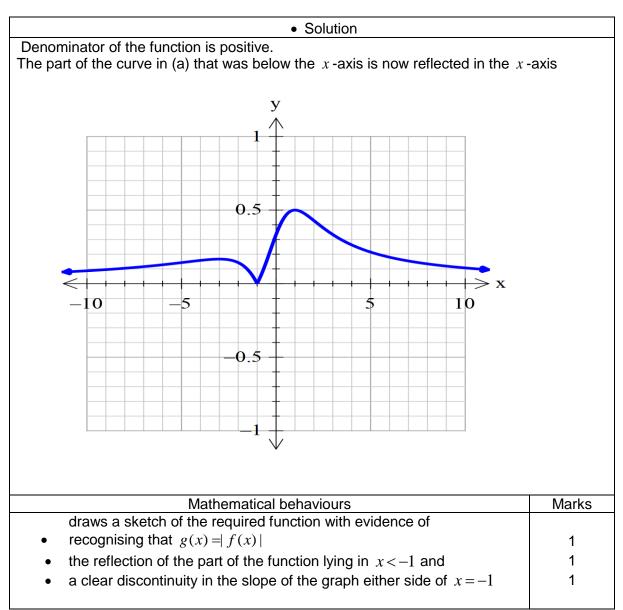
Solution	
Now $\overrightarrow{PQ} = (-1, a - 6, 5)$ and $\overrightarrow{PR} = (b - 2, -1, 3)$. (note that $\overrightarrow{QR} = (b - 1, 5 - a, -2)$ As PQR is a straight line, these two vectors are parallel and are linearly related Inspection of the k components show that $3 \overrightarrow{PQ} = 5 \overrightarrow{PR}$ Comparison of the i components gives $-3 = 5(b-2) \Rightarrow 5b = 7 \Rightarrow b = \frac{7}{5}$. Comparison of the j components gives $3(a-6) = -5 \Rightarrow 3a = 13 \Rightarrow a = \frac{13}{3}$	
 Mathematical behaviours calculates correctly two of the vectors PQ, PR and QR uses the k components of the two vectors to establish the linear relationship compares the first components to determine the value of b compares the second components to determine the value of a 	Marks 1 1 1 1

Question 2(a)

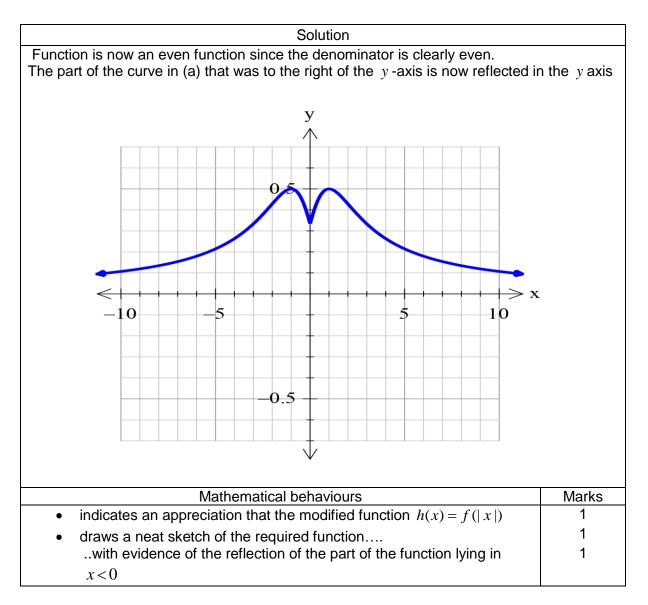
(9 marks)



Question 2b(i)



Question 2b(ii)



Question 3 (a)

Solution $z = \frac{1 + i\sqrt{3}}{1 + i} \times \frac{1 - i}{1 - i} = \frac{1 + \sqrt{3} + i(\sqrt{3} - 1)}{2}$ Hence Re $z = \frac{1+\sqrt{3}}{2}$, Im $z = \frac{\sqrt{3}-1}{2}$ Mathematical behaviours Marks gives correct value for $\operatorname{Re} z$ 1 • 1 • gives correct value for $\operatorname{Im} z$

Question 3 (b)

Solution	
$\arg(1+i\sqrt{3}) = \frac{\pi}{3}$ and $\arg(1+i) = \frac{\pi}{4}$	
Hence $\arg z = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$	
Therefore	
$\tan\frac{\pi}{12} = \frac{\mathrm{Im}(z)}{\mathrm{Re}(z)} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3+1-2\sqrt{3}}{2} = 2-\sqrt{3}$	
Mathematical behaviours	Marks
• states correct value of $\arg(1+i\sqrt{3})$ and $\arg(1+i)$	1
• deduces correct value of arg z	1
• gives correct value of $tan(\pi/12)$	1

(2 marks)

Question 4 (a)

(2 marks)

Solution	
The direction vector $\overrightarrow{AB} = (-7, 3, 0)$	
Thus required vector equation is $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + \mathbf{k} + \lambda (-7\mathbf{i} + 3\mathbf{j})$	
Mathematical behaviours	Marks
calculates correctly the direction vector	1
 writes down an acceptable form of the vector line 	1

Question 4 (b)

Solution	
The point on the line with the first component 18 corresponds to $4-7\lambda = 18 \Longrightarrow$	$\lambda = -2$
Then $\mathbf{r} = 18 \mathbf{i} - 8 \mathbf{j} + \mathbf{k}$ so that we have m=-8 and n=1.	
Mathematical behaviours	Marks
• uses the given point to infer the value of λ	1

hence deduces the correct values of m and n

Question 4 (c)

Solution	
If $x = 4 - 7\lambda$, $y = 3\lambda - 2 \Longrightarrow \lambda = \frac{4 - x}{7} = \frac{y + 2}{3}$	
Now the z-coordinate is constant so that the Cartesian equation is	
$\frac{4-x}{7} = \frac{y+2}{3}; \ z = 1$	
Mathematical behaviours	Marks
 obtains the correct relationship between x and y 	1
 deduces the correct equation including the property that z is constant. 	1

Question 4 (d)

Solution	
As the <i>z</i> co-ordinate is constant, the line lies in the plane $z = 1$ parallel to the <i>x</i>	y -plane
Mathematical behaviours	Marks
 characterises the line as being parallel to the xy-plane 	1

(2 marks)

(1 mark)

(2 marks)

1

Question 5 (a)

(2 marks)

Solution	
$ z ^2 = \left(\frac{-\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1$. Hence $ z = 1$	
Also the argument of z lies in the second quadrant with	
arg $z = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = \pi - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$	
Mathematical behaviours	Marks
• states the correct value for $ z $	1
• gives the correct value for arg z	1

Question 5 (b)

Solution	
From part (a) we know that $z = \operatorname{cis}\left(\frac{5\pi}{6}\right)$ and so $z^{12} = \operatorname{cis}(10\pi) = 1$ Now $2018 = 168 \times 12 + 2$ and so $z^{2018} = z^2 = \operatorname{cis}\left(\frac{5\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2}$ So $\operatorname{Re}(z^{2018}) = \frac{1}{2}$ and $\operatorname{Im}(z^{2018}) = -\frac{\sqrt{3}}{2}$.	(1− <i>i</i> √3)
Mathematical behaviours	Marks
• derives the result that $z^{12} = 1$	1
• observes that $z^{2018} = z^2$	1
 deduces the correct values of the real and imaginary parts 	1

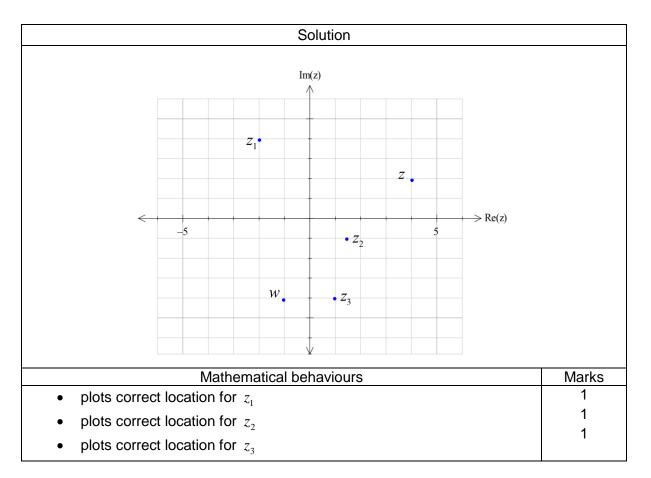
Solution	
Consider the augmented matrix	
$ \begin{pmatrix} 1 & -2 & 1 & & 7 \\ 2 & 1 & -2 & & 1 \\ -1 & \alpha & 2 & & \beta \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -2 & 1 & & 7 \\ 0 & 5 & -4 & & -13 \\ 0 & \alpha - 2 & 3 & & \beta + 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -2 & 1 & & 7 \\ 0 & 5 & -4 & & -13 \\ 0 & \alpha + \frac{7}{4} & 0 & & \beta - \frac{11}{4} \end{pmatrix} $ Thus if $\alpha \neq -7/4$ the system will have a unique solution. If $\alpha = -7/4$ then the third equation is inconsistent unless $\beta = 11/4$. Hence no solution possible if $\alpha = -7/4$ and $\beta \neq 11/4$.	
Mathematical behaviours	Marks
sets up the augmented matrix	1
 performs correctly one relevant row operation 	1
 performs correctly a second relevant row operation 	1
• notes that α has to have a particular value for no solution	1
• notes that in addition β must be unequal to another critical value	1

Question 6 (b)

(2 marks)

Solution	
If $(x, y, z) = (3, -1, 2)$ is to be a unique solution the third equation forces	
$-\alpha + 1 = \beta \implies \alpha + \beta = 1$	
Moreover we still need $\alpha \neq -7/4$ else the systems admits an infinity of solutio	nc
	1
Mathematical behaviours	Marks
	1
Mathematical behaviours	1

Question 7 (a)



Question 7 (b)

(2 marks)

